
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Characterizing and Evaluating Different Deployment
Approaches for Cloud Applications

Johannes Wettinger, Vasilios Andrikopoulos, Steve Strauch, Frank Leymann

© 2014 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{WettingerASL2014,
 author = {Johannes Wettinger and Vasilios Andrikopoulos and Steve Strauch
 and Frank Leymann},
 title = {Characterizing and Evaluating Different Deployment Approaches
 for Cloud Applications},
 booktitle = {Proceedings of the IEEE International Conference on Cloud
 Engineering (IEEE IC2E 2014)},
 year = {2014},
 pages = {205--214},
 doi = {10.1109/IC2E.2014.49},
 publisher = {IEEE Computer Society}
}

:

Institute of Architecture of Application Systems

Characterizing and Evaluating Different Deployment Approaches
for Cloud Applications

Johannes Wettinger, Vasilios Andrikopoulos, Steve Strauch, Frank Leymann

Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

Abstract—Fully automated provisioning and deployment in
order to reduce the costs for managing applications is one of
the most essential requirements to make use of the benefits of
Cloud computing. Several approaches and tools are available to
automate the involved processes. The DevOps community, for
example, provides tooling and artifacts to realize deployment
automation on Infrastructure as a Service level in a mostly
application-oriented manner. Platform as a Service frameworks
are also available for the same purpose. In this paper we
categorize and characterize available deployment approaches
independently from the underlying technology used. For this
purpose, we choose Web applications with different technology
stacks and analyze their specific deployment requirements.
Afterwards, we provision these applications using each of the
identified types of deployment approaches in the Cloud. Finally,
we discuss the evaluation results and derive recommendations
which deployment approach to use based on the deployment
requirements of an application.

Keywords-middleware-oriented deployment; application-
oriented deployment; Cloud computing; DevOps; decision
support

I. INTRODUCTION

The popularity and success of Cloud computing was

built on public infrastructure offerings such as Amazon

Web Services1 providing relatively cheap resources such

as virtual machines and virtual disks (in the Infrastructure as
a Service (IaaS) delivery model [1]). These resources can be

provisioned and decommissioned on demand, so the customer

only pays for what he is actually using. According to the

NIST definition of Cloud computing [1] services provided

through the Cloud are not limited to the infrastructure level

to provision infrastructure resources such as computing

power and storage. The higher-level service delivery models

Platform as a Service (PaaS) and Software as a Service
(SaaS) are also available. As the Cloud service market is

getting more mature, these service models gain more traction

in the market with more offerings such as the Google App

Engine2 becoming available.

In particular in the case of the PaaS model, providers

essentially offer Cloud-enabled middleware solutions to

their customers. Such middleware can either be provided

1Amazon Web Services: http://aws.amazon.com
2Google App Engine: https://cloud.google.com/products/app-engine

as middleware services (e.g., database as a service) or

reusable middleware components that can be used as a

foundation to deploy the actual application components.

Different deployment approaches are therefore available in

this environment, depending on how the provider-driven

automation of the offered middleware solutions is leveraged

by the application developers. The research presented in this

work focuses in particular on the characterization of these

deployment approaches, with the intention of identifying the

more efficient deployment of different types of application

stacks on PaaS and IaaS solutions. The overall goal of our

work is to build the foundation for a decision support system

for Cloud application deployment. In addition, this work

addresses some of the open issues identified in [2], in terms

of providing a more thorough evaluation of the discussed

approaches.

The main contributions of our work can therefore be

summarized as follows:

• We define and characterize two types of deployment

approaches based on the state of the art and the

limitations of current tools.

• We analyze the deployment requirements of three

different applications covering a set of the most popular

technologies for developing Web applications.

• Based on these requirements, we implement the auto-

mated deployment of all three applications using both

types of deployment approaches for evaluation purposes.

This results in eight deployment scenarios measuring

both qualitative and quantitative properties from which

we derive a number of findings.

• Finally, we present an initial list of lessons learned based

on these findings to support the decision when to use

which deployment approach.

The remaining of this paper is structured as follows:

Section II motivates our work by introducing the applications

to be used for evaluation purposes and analyzing their specific

deployment requirements. Based on the state of the art and

current limitations two types of deployment approaches are

identified in Section III. Our evaluation of these deployment

approaches is presented in Section IV based on the three

applications and their deployment requirements described in

2014 IEEE International Conference on Cloud Engineering

978-1-4799-3766-0/14 $31.00 © 2014 IEEE

DOI 10.1109/IC2E.2014.32

205

Legend

Google Maps
Web Services

Context as a
Service

Orchestra BPEL Engine

External
Comp. / Service Context Integration

Processes (CIPs)
(BPEL Processes)

Taxi Company A

Customer
GUI

Taxi
Drivers’

GUI

Taxi Company B

Customer
GUI

Taxi
Drivers’

GUI

Front-End Back-End

JOnAS Application Server

Middleware
Component

Application
Component

Taxi Service
Provider

(BPEL Process)

Clients

Communicates

JOnAS Application Server

Tenant
Registry

(PostgreSQL)

Service
Registry

(PostgreSQL)

Config
Registry

(PostgreSQL)

Figure 1. Architecture of the Taxi Application

Section II. Consequently, the evaluation results are discussed

in Section V including the presentation of several findings.

Furthermore, an initial list of lessons learned is derived from

these findings in the same section. Section VI presents an

overview of related work. Finally, Section VII concludes this

paper and describes some ideas for future work.

II. MOTIVATION

In this section we introduce the three applications that

are realized based on different technologies (Section II-A).

These applications are used for the evaluation of the different

deployment approaches we propose in this paper. Moreover,

we identify application-specific deployment requirements for

all three applications (Section II-B) to be addressed later on

during the evaluation.

A. Applications

We chose the applications Taxi Application (Taxi App),
SugarCRM, and Chat Application (Chat App) because they

cover a set of the most important and established technologies

used for Web application development today. These are in

particular, Java EE and Web services, PHP and the LAMP

stack, and Node.js, respectively. The topologies of all three

applications consist of middleware components, application
components, and external services.

An overview of the Taxi App’s architecture developed in

the scope of the European Project 4CaaSt3 as a demonstrator

of the PaaS offerings of the project is shown in Figure 1 [3].

A service provider offers taxi management software as

a service to different taxi companies, i.e., tenants. Taxi

company customers, who are users of the tenant, submit

their taxi transportation requests to the company that they

are registered with. The taxi management software (back-end)

is realized as a set of business processes using BPEL [4].

The taxi management software leverages context integration

3EU Project 4CaaSt: http://www.4caast.eu

Apache HTTP Server

Clients

PHP Module

SugarCRM
Application

MySQL DB Server

PHP Runtime
SugarCRM

DB

Legend

External
Comp. / Service

Middleware
Component

Application
Component

Communicates

Uses

Figure 2. Architecture of SugarCRM

processes also implemented in BPEL to retrieve context

information about taxi cabs such as location and taxi driver

contact details from the 4CaaSt platform-internal Context as

a Service. Moreover, Google Maps Web Services [5] provide

distance calculations between the pick-up location and the

location of the taxi cab. All BPEL processes are deployed in

the open source BPEL engine Orchestra4 version 4.9.0-M3,

which itself is deployed in the Java Open Application Server

(JOnAS)5 version 5.3.0-M4. The taxi company-specific front-

ends consist of a Customer GUI and a Taxi Drivers’ GUI,

which are both deployed in JOnAS version 5.3.0-M4. The

multi-tenant, open source Enterprise Service Bus ESBMT6

as messaging middleware (Figure 1) enables loose coupling

and provides a flexible integration solution by avoiding hard-

coded point-to-point connections. ESBMT is based on Apache

ServiceMix7 version 4.3.0 and comes with three registries

realized as PostgreSQL8 version 9.1 databases [6], [7].

Figure 2 provides an overview of the architecture of Sugar-

CRM9, an open source Customer Relationship Management

Software (CRM). All relevant data such as contact details of

the customers are stored in the SugarCRM Database within

a MySQL Database Server10 version 5.5.32. The SugarCRM

Web Application is implemented in PHP and is running on an

Apache HTTP Server11 version 2.2.22 using a PHP runtime

version 5.3.10.

The Chat App’s architecture is presented in Figure 3. The

user information and the chat logs are stored in the Chat

Log database using a Redis Database Server12 version 2.6.14.

The Chat App is based on Node.js version 0.10.1313.

In the next section we define the general and application-

specific deployment requirements for each of the three

applications introduced. These requirements have to be

4OW2 Orchestra: http://orchestra.ow2.org
5OW2 JOnAS: http://jonas.ow2.org
6ESBMT: http://www.iaas.uni-stuttgart.de/esbmt
7Apache ServiceMix: http://servicemix.apache.org
8PostgreSQL: http://www.postgresql.org
9SugarCRM: http://www.sugarcrm.com
10MySQL Server: http://www.mysql.com
11Apache HTTP Server: http://httpd.apache.org
12Redis: http://redis.io
13Node.js: http://nodejs.org

206

Node.js

Clients

Chat
Application

Redis DB Server

Chat Log
DB

Legend

External
Comp. / Service

Middleware
Component

Application
Component

Communicates

Figure 3. Architecture of the Chat Application

considered when creating corresponding deployment plans.

A deployment plan (e.g., a script) implements the logic

necessary to deploy application or middleware components.

B. Deployment Requirements

There are requirements that apply to the deployment of

all the presented applications. These general deployment

requirements are in particular:

GR1 Middleware deployment: Configurable deployment

plans are required to deploy all middleware components

involved, such as the JOnAS application server for

the Taxi App or the MySQL database server for

SugarCRM.

GR2 Application deployment: Configurable deployment

plans are required to deploy all application components

on top of the middleware, such as the customer user

interface for the Taxi App or the chat log database for

the Chat App.

GR3 Wiring of components: The middleware as well as the

application components are not deployed in an isolated

manner. Application components need to be wired with

each other or with some of the middleware components

to enable communication between components as

outlined in Figure 1, Figure 2, and Figure 3.

Further technical requirements regarding the design of

deployment plans are discussed in [2]. In addition to these

general requirements, each presented application imposes

additional deployment requirements. For the Taxi App [3] we

identified the following requirements when we implemented

its automated deployment:

TR1 Deployment of additional tenants: After the initial

deployment has been performed, mechanisms are

needed to deploy additional tenants. This involves

sending SOAP messages to the Web service-based

management interface of the ESB as well as deploying

additional WAR files (customer GUI and taxi drivers’

GUI) to the JOnAS application server.

TR2 Sending SOAP messages using SoapUI14: To register

tenant endpoints inside the ESB several SOAP mes-

14SoapUI: http://www.soapui.org

sages need to be sent to its management interface both

upon initial deployment of the application and when

additional tenants are deployed. For the Taxi App these

messages are sent by running a number of test cases

by the SoapUI’s command line-based test runner.

TR3 Modification of WAR files: The WAR files that are

deployed both upon the application’s initial deployment

and when adding additional tenants need to be modified

at deployment time. This is because they need to

connect to the tenant endpoints registered in the ESB.

Therefore, the address of the corresponding tenant

endpoint and the tenant ID have to be stored as key-

value pairs inside a properties file located in the WAR

file.

In contrast to the Taxi App (and the Chat App, later) the

deployment automation of SugarCRM as described in [8]

was realized with distributed deployment in mind, meaning

that the application and the database are hosted on two

different virtual machines. When automating the deployment

of SugarCRM, the following requirements were identified:

SR1 Permission settings: The permissions of particular files

and directories of the PHP application need to be set

specifically. As an example, the cache directory needs

to be writable. This is a typical requirement for the

deployment of PHP applications.

SR2 Silent installation: After extracting and placing all

the PHP script files of the application, a so called

silent installation needs to be triggered by calling the

install.php script using an HTTP GET request.

As a result, the database structure is created and the

application gets preconfigured by creating a default

user (administrator).

SR3 Dynamic wiring at deployment time: This requirement

refines GR3: the SugarCRM application needs to be

wired with the database dynamically at deployment
time. Thus, the endpoint of the database needs to be

put to the application’s configuration, so the connection

can be established.

Compared to the Taxi App and SugarCRM, the Chat

App’s architecture is relatively simple. Thus, automating

the deployment based on deployment plans is easier. There

were two requirements identified during the implementation

of the deployment plans:

CR1 Node package manager: Node.js applications such as

the Chat App typically provide a package.json file

that holds some metadata of the application as well

as its dependencies on other Node.js modules. These

dependencies are resolved at deployment time using

the node package manager (npm)15.

CR2 Pointer to application’s entry point: Node.js applica-

tions typically consist of several scripts implemented

using JavaScript. To start such an application, a

15npm: http://npmjs.org

207

particular script needs to be defined as entry point. This

script is then called by the Node.js runtime environment

to initialize and start the actual application.

This section outlined the fact that different applications

have different requirements regarding their deployment.

These individual requirements have to be taken into account

when implementing plans to automate the deployment process

of a particular application. In general, there are different

approaches to realize deployment automation such as the one

described in [2]. Because there is not a single approach that

fits all the different requirements, it is necessary to be able

to identify the “best” approach for each type of application.

Thus, in the following we categorize existing deployment

approaches based on the purpose and granularity of their

deployment plans.

III. DEPLOYMENT APPROACHES

Taking a look at the state of the art, the DevOps community

focuses on providing pragmatic solutions for the automation

of application deployment. The focus is on deploying prede-

fined application stacks across several (virtual or physical)

machines. Reusability only occurs when similar application

stacks are being deployed by the same teams of people. Such

a deployment can be characterized as application-oriented.

The communities affiliated with some of the popular DevOps

tools such as Chef [9] or Puppet [10] provide artifacts such

as Chef cookbooks16 to build deployment plans for certain

application stacks. Deployment plans based on these artifacts

can be used to automate the deployment of the applications

described in Section II-A. Such plans can be implemented as

Chef cookbooks by (i) orchestrating existing cookbooks that

are already available and (ii) implementing some application-

specific deployment logic. Existing cookbooks are typically

available to deploy popular middleware components such

as an Apache HTTP server or a PHP runtime environment.

Consequently, this deployment approach can be summarized

as follows:

Application-oriented Deployment: Application-specific
but portable deployment plans enable the deployment of a
particular application including all application components
and middleware components involved.

The portability of deployment plans enables infrastructure
abstraction [2], meaning that the plans are not bound to a

specific infrastructure such as a particular XaaS provider. As

an example, most of the cookbooks provided by the Chef

community realize infrastructure abstraction because Chef

cookbooks are implemented using a domain-specific language

that is not bound to a specific platform. Deployment plans

that follow the application-oriented deployment approach are

typically limited in their reuse because they were created to

automate the deployment of a specific application. In addition,

the deployment plans involved are typically hard-wired, i.e.,

16Chef community: http://community.opscode.com/cookbooks

they have explicit dependencies that cannot be exchanged

dynamically without changing the plans themselves. To

provide an approach enabling the creation of deployment

plans with improved reusability, we proposed the middleware-
oriented deployment approach in [2]:

Middleware-oriented Deployment: Generic and reusable
middleware components that are not bound to a specific
application enable the deployment of Cloud applications
including (i) the middleware functionality required by the
application and (ii) the application components involved.

In this case, application deployment is performed by

parameterizing and executing portable deployment plans

that are attached only to the middleware components. We

assume that middleware components are not bound to specific

applications, so these middleware components including

their deployment plans can be reused to deploy different

applications of the same type. There are no deployment

plans attached to any application component when following

the pure approach of middleware-oriented deployment.

In case the application components are not bound to

specific middleware components, this approach enables

middleware abstraction. Consequently, particular middleware

components can be arbitrarily exchanged, e.g., based on

functional or non-functional requirements. As an example,

[2] shows how the JOnAS application server in the Taxi

App stack can be exchanged by a Tomcat servlet container.

Because the Tomcat servlet container consumes less memory

and gets deployed faster, it could be typically used in a

development environment instead of deploying a complete

application server such as JOnAS.

The Chef community has published cookbooks that can

be classified under the middleware-oriented deployment

approach such as the application_php17 cookbook to

deploy arbitrary applications or application components im-

plemented in PHP. However, these cookbooks do not enable

middleware abstraction because they contain hard-wired

dependencies to other middleware components. For example,

the application_php cookbook mentioned before has

a hard-wired dependency to the Apache HTTP server as

its underlying middleware. Consequently, this middleware

component that provides a PHP runtime environment cannot

be exchanged dynamically without changing the cookbook.

In addition, these cookbooks cannot be used as deployment

plans that can be parameterized. Usually, they provide

resources that can be used in other cookbooks. Thus, a

developer needs to create an additional deployment plan that

implements the configuration and wiring of these resources.

In the following we evaluate these types of approaches

using the applications presented in the previous section

as the means to identify which approach fits better which

application.

17http://community.opscode.com/cookbooks/application php

208

IV. EVALUATION

For evaluation purposes deployment plans are implemented

to automate the deployment of all three applications described

in Section II using both the application-oriented and the

middleware-oriented approach. This results in six different

deployment scenarios (three applications multiplied by two

approaches). In addition, we deploy the SugarCRM applica-

tion in two manners (centralized in one VM, and distributed

across different VMs), again using both the application-

oriented and the middleware-oriented deployment approach

to further broaden the scope of our evaluation. This adds two

additional deployment scenarios, so our evaluation covers

eight deployment scenarios in total. Technically, the deploy-

ment plans are implemented using Chef. However, we do not

rely on any unique feature of Chef, so the deployment plans

can be implemented using different deployment automation

tools such as Puppet, Juju18, OpenTOSCA19, and other plan-

based management approaches [11].
For each deployment scenario, five measurements are

performed in total. These include three qualitative and two

quantitative measurements. All properties are measured for

this purpose in an ordinal non-normalized scale.

A. Qualitative Measurements
First, we measure the following three qualitative properties

for each deployment plan:

• Flexibility: This property expresses the degree of cus-

tomizability by configuring a particular deployment plan

using input parameters at runtime. Measurable degrees:

1) No input parameters, i.e., no dynamics at runtime.

2) Configuration options for predefined components,

e.g., database credentials.

3) Dynamic processing of arbitrary application com-

ponents of a particular type.

• Assumptions: These are the assumptions made regarding

the input of a particular deployment plan. Obviously

this can only be measured in case the plan has any

parameters at all. Measurable degrees:

1) Application-specific assumptions, e.g., a tenant ID

needs to be written into a WAR file (application

component) either by the deployment plan itself

or by some kind of preprocessor.

2) Common assumptions for the corresponding type

of application component, e.g., a Node.js applica-

tion typically owns a package.json file that

specifies its dependencies.

3) No specific assumptions.

• Reusability: The following degrees specify the reusabil-

ity of a particular deployment plan:

1) No reusability, i.e., the plan was specifically

created for a particular application.

18Juju: http://juju.ubuntu.com
19OpenTOSCA: http://www.iaas.uni-stuttgart.de/OpenTOSCA

2) Plan can be used to deploy reusable but fixed

components such as middleware components that

are required in different application stacks.

3) Plan can be used to deploy arbitrary application

components of a particular type.

For all three properties described above, the degrees are in

a monotonically increasing scale (that is, larger is perceived

as better). Table I provides an overview of the deployment

plans that have been implemented to realize the deployment

scenarios described before. Each plan is characterized by

its type: (i) middleware means that the plan deploys one or

more middleware components. (ii) Plans of type middleware
& app generic are typically used for the middleware-oriented

deployment approach to deploy middleware components

as well as application components on top of them as

discussed in [2]. (iii) App specific plans are mostly used

for the application-oriented deployment approach because

they implement specific logic to automate the deployment

of particular application components. Furthermore, the input

parameters (Chef attributes) for each plan are identified.

Finally, Table I shows the measured degrees for the properties

flexibility, assumptions, and reusability for each deployment

plan.

B. Quantitative Measurements

In addition to the qualitative measurements, we also

measure the following two quantitative properties for each

deployment scenario:

• Total Complexity: This property expresses the number of

“atomic actions”, i.e., Chef resources20 executed during

deployment.

• Total Execution Time: This is the total time required

for the execution of all deployment plans involved in a

single scenario, measured in seconds.

Table II shows the quantitatively measured total complexity

of each deployment scenario, i.e., the number of Chef

resources executed at deployment time. Table III outlines

the average execution time in total for each deployment

scenario. The average time is based on five deployment runs

per scenario. All deployments have been performed using the

Cloud infrastructure provided by FlexiScale21. The Taxi App

has been deployed on Ubuntu Linux 10.04 Server (64-bit)

on a virtual machine providing 2 CPU cores and 4 gigabytes

of memory. Both SugarCRM and the Chat App have been

deployed on Ubuntu Linux 12.04 Server (64-bit) based on

1 CPU core and 1 gigabyte of memory. For the distributed

SugarCRM deployment, two virtual machines were involved:

one for the database and another one for the application itself.

Each machine has 1 CPU core and 1 gigabyte of memory.

The deployment of the database was running in parallel to

the deployment of the actual application. Then, these two

20Chef resources: http://docs.opscode.com/resource.html
21FlexiScale: http://www.flexiscale.com

209

Table I
QUALITATIVE MEASUREMENTS OF DEPLOYMENT PLANS

Plan Type Input Parameters Flexibility Assumptions Reusability

Application-oriented deployment of Taxi App:
ESBMT Middleware DB credentials 2 3 2

PostgreSQL Middleware DB credentials 2 3 2

JOnAS Middleware JOnAS configuration 2 3 2

Orchestra Middleware none 1 – 2

App_Helper_Services App Specific none 1 – 1

App_ESB_Components App Specific none 1 – 1

PostgreSQL_DBs App Specific DB credentials 2 3 1

App_BPEL_Processes App Specific none 1 – 1

App_Tenant App Specific URLs of WAR files (taxi driver GUI, cus-
tomer GUI), URL of SoapUI test suite

3 1 1

Middleware-oriented deployment of Taxi App:
ESBMT Middleware & App Generic DB credentials, URLs of SoapUI test suites 3 3 3

PostgreSQL Middleware & App Generic DB credentials, DB specifications 3 3 3

JOnAS Middleware & App Generic JOnAS configuration, URLs of preprocessed
WAR files (taxi driver GUI, customer GUI)

3 1 3

Orchestra Middleware & App Generic URLs of BPEL processes 3 3 3

Application-oriented deployment of SugarCRM:
Apache_HTTP_Server Middleware Apache configuration 2 3 2

PHP_Runtime_Env Middleware none 1 – 2

MySQL Middleware none 2 – 2

SugarCRM_DB App Specific DB credentials 2 3 1

SugarCRM_App App Specific none 1 – 1

Connect_App_to_DB App Specific DB credentials 2 3 1

Middleware-oriented deployment of SugarCRM:
Apache_HTTP_Server Middleware & App Generic Apache configuration, URL of ZIP file (Sug-

arCRM PHP scripts), permission information
3 1 3

PHP_Runtime_Env Middleware & App Generic none 1 – 2

MySQL Middleware & App Generic DB credentials 3 3 3

Connect_App_to_DB App Specific DB credentials, SugarCRM admin password 2 3 1

Application-oriented deployment of Chat App:
Node.js Middleware none 2 – 2

Redis Middleware none 2 – 2

Chat_App App Specific none 1 – 1

Middleware-oriented deployment of Chat App:
Node.js Middleware & App Generic URL of ZIP file (Chat App scripts) 3 2 3

Redis Middleware none 2 – 2

machines were dynamically wired at deployment time by

exchanging the database endpoint information using an AWS

S3 bucket22.

This section described how we performed the evaluation

based on eight deployment scenarios. We presented the results

of the evaluation and explained how to understand them. The

following Section V discusses the evaluation results and

presents findings as well as lessons learned.

22Amazon Web Services S3 (AWS S3): http://aws.amazon.com/s3

V. DISCUSSION

In our previous work [2] we evaluated and discussed

already the impact of using the middleware-oriented deploy-

ment approach in order to reduce the number of deployment

plans for the Taxi App. The evaluation presented in this

paper broadens the horizon by looking beyond the number of

plans involved for the deployment of a single application. For

this purpose, in the following we analyze the measurements

reported in the previous section.

210

Table II
QUANTITATIVE MEASUREMENTS OF SCENARIOS’ TOTAL COMPLEXITY

Application App.-oriented Middleware-oriented

Taxi App 139 139

SugarCRM 57 57

SugarCRM (distributed) 57 57

Chat App 16 16

Table III
TOTAL EXECUTION TIME OF DEPLOYMENT PLANS (AVERAGE)

Application App.-oriented Middleware-oriented

Taxi App 899 sec. 937 sec.

SugarCRM 264 sec. 262 sec.

SugarCRM (distributed) 184 sec. 180 sec.

Chat App 219 sec. 228 sec.

A. Findings

One of the first findings that can be derived from the evalu-

ation results shown in Table I is that the middleware-oriented

deployment approach generally improves the reusability of

deployment plans (Table I, column reusability). Furthermore,

our measurements verify the observations reported in [2]

that the number of deployment plans decreases when using

the middleware-oriented deployment approach in general.

This is due to the fact that application-specific actions are

covered by parameterizing generic deployment plans attached

to middleware components.

However, the pure middleware-oriented deployment ap-

proach cannot be implemented for all deployment scenarios.

Middleware-oriented deployment is typically implemented

based on plans of type middleware and middleware &
app generic. Because app specific plans are specifically

created for particular application components they should

be avoided when following the middleware-oriented ap-

proach. In case of implementing a middleware-oriented

deployment of SugarCRM, for example, Table I shows that

there is a plan to wire the application with the database

(Connect_App_to_DB). This plan is of type app specific
because it cannot be implemented in a generic manner. As

discussed in Section II-B, the requirements SR2 and SR3

require very application-specific actions to be performed.

These are implemented using the wiring plan.

In case generic deployment plans for deploying application

components are attached to middleware components, typically

assumptions are made regarding the application components

deployed using these plans. For instance, the Node.js plan

used in the middleware-oriented deployment expects (i) a

package.json file as described in the requirement CR1

and (ii) a pointer to the script that is the entry point for a

particular application (CR2). Another example is the JOnAS

plan to deploy additional tenants (WAR files) for the Taxi

App (TR1, TR3).

The flexibility of deployment plans following the

application-oriented deployment approach is, as expected,

worse compared to middleware-oriented deployment because

their implementation is tightly coupled to specific applica-

tion components. They typically expect a few rudimentary

input parameters only such as configuration options for the

middleware.

When looking at Table II it becomes clear that the

complexity of deploying a particular application is equal

in both cases, and therefore it does not depend on the

deployment approach chosen. This is because there is no

difference on the level of “atomic actions”, i.e., on the level

of Chef resources that are executed at deployment time such

as creating a particular directory, storing a configuration file,

or installing a software package.

Table III shows minimal differences between application-

oriented and middleware-oriented deployment for the average

deployment time of each scenario. These measurements

match the complexity measurements shown in Table II:

because the Chef resources executed at deployment time

are the same, it is only logical that there are no significant

differences in terms of the plans’ total execution time. The

minor differences are due to the fact that files (middleware

and application components) are downloaded from the Web

during deployment. Because the quality of the underlying

HTTP connections for these downloads could differ, there

are small deviations.

B. Lessons Learned

Based on the findings presented in the previous, we now

summarize several of the lessons learned to support the

decision which deployment approach fits which type of

application:

L1 – Middleware-oriented deployment plans are typically
preferred for scenarios where conventions for application
components are established, so there are no or minimal

assumptions regarding the application components. Exam-

ples for such conventions are the package.json file

(requirement CR1 in Section II-B), setting permissions for

PHP applications (SR1), or sending SOAP messages using

SoapUI test suites (TR2). From this perspective, middleware-

oriented deployment is preferred for the Chat App because the

application-specific deployment requirements CR1 and CR2

can be transferred to other Node.js applications in general.

L2 – There are application-specific requirements that
cannot be generally transferred to other applications of the
same type, so the implementation of middleware-oriented

deployment for the Taxi App and SugarCRM is not as

straightforward as it is for the Chat App. For SugarCRM

the Connect_App_to_DB plan prevents the pure im-

plementation of middleware-oriented deployment because

application-specific deployment requirements (SR2, SR3)

211

need to be fulfilled. These cannot be transferred to other PHP

applications in general because the configuration of each PHP

application is different. For the Taxi App middleware-oriented

deployment can be realized. However, to fulfill requirement

TR3, WAR files that are deployed using the JOnAS plan need

to be preprocessed before deployment: the tenant ID and the

tenant endpoint are stored inside the WAR files. Furthermore,

TR1 cannot be fulfilled by a single deployment plan because

this is application-specific knowledge. To deploy additional

tenants both the JOnAS and the ESBMT plans have to be

used in combination with certain parameters.

L3 – In case of distributed deployments such as we did

for SugarCRM, the wiring logic can be implemented in a
middleware-oriented manner only if it does not need any
application-specific knowledge of how and where to store the
endpoint information. Typically, wiring plans are application-

specific such as the Connect_App_to_DB plan in case of

deploying SugarCRM. This is because most of the times

endpoint information needs to be stored in application-

specific configuration files.

L4 – Even if the middleware-oriented deployment approach
cannot be implemented completely, a hybrid approach can
be realized. In this case as many deployment plans as

possible are implemented in a middleware-oriented manner

to improve flexibility and reusability. However, application-

specific deployment actions are performed using plans

that follow the application-oriented deployment approach.

Examples for such actions are deploying additional tenants

for the Taxi App (TR1) or wiring the SugarCRM application

with the database (SR3). We followed this approach implicitly

when we implemented middleware-oriented deployment for

SugarCRM because it is impossible to implement the logic

of the application-specific Connect_App_to_DB plan in

a generic manner.

L5 – The usage of middleware-oriented deployment plans
instead of application-oriented ones does neither affect
the total complexity of a deployment scenario nor the
total execution time (Table II and Table III). Consequently,

performance aspects do not have to be considered.

L6 – However, the development of plans to realize
middleware-oriented deployment might be more complex
for the plan developers. As shown in Table I these plans

can be parameterized using sets of input parameters. These

parameters imply more dynamics in the plans’ implementa-

tion increasing the complexity of the development. The gain

of such an investment is a higher degree of flexibility and

reusability as shown in Table I.

VI. RELATED WORK

To the extent of our knowledge there is no existing work

beyond [2] attempting to evaluate and classify different

deployment approaches. For this purpose in the following we

survey various deployment approaches from the literature.

In order to have a holistic model of a particular Cloud

service for the deployment, its structure and behavior can be

specified by using a higher-level model-driven approach. This

holistic model is independent from the deployment approach

used to deploy the service. Two examples to realize this

approach are the Topology and Orchestration Specification

for Cloud Applications (TOSCA) [12] and Blueprints [13].

Whereas TOSCA is an emerging standard [14], Blueprints

are originating in the 4CaaSt project. In addition, there are

commercial products available that implement the model-

driven approach. An example for these products is the

IBM SmartCloud Orchestrator23. The goal of the model-

driven approach is to enable top-down modeling by starting

with a higher-level model for the Cloud service. To enable

the deployment of such a model, scripts may have to be

attached to the model to perform the actual deployment of

the middleware and application components.

For the deployment of simple and complex application

stacks including multiple components such as the three appli-

cations introduced in Section II many alternative deployment

approaches exist that are state of the art. The first approach

with respect to the IaaS service model is to encapsulate the

different middleware components and application components

in virtual machine images. Today, there are many IaaS

providers offering the deployment of virtual machine images

such as Amazon Web Services (AWS)24. In addition, there

are open source products such as OpenStack [15] available

to create an IaaS environment for deploying virtual machine

images. The Open Virtualization Format (OVF) [16] aims to

be a standardized format for such images.

For each of the three applications introduced in Section II,

a virtual machine image can be created to host the whole

application or each application component can be hosted

in a separate virtual machine (VM). Another possibility

is a compromise between both options by hosting some

components on separate VMs and other components of the

same application might be grouped together to be hosted in

the same VM, e.g., depending on the resource requirements

of each component. Several approaches are available that are

focused on optimized provisioning of virtual machines and

deploying virtual machine images such as [17], [18], and

[19].

Focusing on the IaaS model, the alternative is to use

standard images that basically provide a plain operating

system only, instead of completely pre-installed and pre-

configured virtual machine images. Configuration manage-

ment tooling proposed by the DevOps community such as

Chef [9], Puppet [10], or CFEngine [20] can be used to

install and configure the actual middleware and application

components. Scripts are used to perform the installation and

configuration [21]. In order to manage topologies that consist

23IBM SmartCloud Orchestrator: http://ibm.co/CPandO
24Amazon Web Services: http://aws.amazon.com

212

of several machines and different components hosted on them,

model-driven tooling such as AWS CloudFormation25, AWS

OpsWorks [22], or Juju26 can be used. An efficient way

of combining configuration management with model-driven

management is described in [8]. In addition, there are holistic

management services available such as EnStratus [23] or

RightScale [24]. These use Chef scripts in the background

to perform the actual deployment. For the three applications

considered in this work this deployment approach implies to

have at least several scripts to install and configure all the

middleware and application components that are involved. In

addition, there may be a specification that orchestrates all

these scripts.

Contrary to the IaaS model, deployment in the PaaS

model can only be performed based on existing platform

offerings such as Google App Engine [25] or Amazon Elastic

Beanstalk [26]. The goal of the PaaS model is to provide

a platform that abstracts from the underlying infrastructure

resources and provides “middleware as a service”. Thus, the

application components are directly hosted on the platform.

To host the Taxi App, SugarCRM, or the Chat App using the

PaaS model, several “middleware services” are required to be

exposed by the platform. These middleware services should

for example provide an ESB, a BPEL engine, or a database

server depending on the topology of the corresponding

application. As these middleware services may not be offered

out of the box by PaaS providers, a custom PaaS environment

can be built based on existing infrastructure resources. As

an example, the PaaS framework Cloud Foundry27 enables

this approach.

VII. CONCLUSIONS AND FUTURE WORK

The automated provisioning and deployment of applica-

tions on IaaS and PaaS solutions is one of the major enablers

in the reduction of the operational costs by migrating to

the Cloud. Tooling and approaches mostly from the DevOps

community have provided the means for such an automation

through deployment plans. However, these approaches focus

on the deployment of individual, specific application stacks at

the time, sacrificing reusability for efficiency and ease in the

development of such deployment plans. For this reason, in

previous work [2], and approaching the problem for a PaaS

offering perspective, we proposed a middleware-oriented

deployment approach that promotes reusability of deployment

plans across different applications.

In this work, we expand on previous work to identify and

characterize two different types of deployment approaches

(application- and middleware-oriented) based on the literature

and existing tooling. We develop deployment plans for

three applications with significantly different deployment

requirements using the identified approaches, and we evaluate

25AWS CloudFormation: http://aws.amazon.com/cloudformation
26Juju: http://juju.ubuntu.com
27Cloud Foundry: http://www.cloudfoundry.org

the results across both qualitative and quantitative dimensions.

Our findings show better reusability, portability, and flexibility

of middleware-oriented plans when compared to application-

oriented ones, without a loss in performance (i.e., deployment

time). The trade-off however for this improvement is in the

difficulty of compiling such plans. Finally, based on what we

derived from this evaluation we provide recommendations

as lessons learned with respect to deciding which approach

to use when deploying an application.

In terms of future work, we plan to extend our evaluation

to cover even more application stacks based on different

technologies such as Ruby on Rails28 or Django29 based

on Python. Based on such an expanded evaluation, further

findings and lessons learned can be derived, in addition

to verifying or falsifying the existing findings and lessons

learned. Furthermore, as discussed in the introduction, the

overall goal of this work is to provide a decision support

system for deployment of applications in the Cloud. Toward

this goal, a decision support matrix based on the lessons

learned from this work is currently under development. The

immediate goal of this matrix is to provide the systematic

means for decisions related to the creation of deployment

plans, as well as how to use and combine them to automate

the deployment of a particular application stack. Based on

such a matrix, a decision support system prototype can then

be implemented. In this context, existing deployment plans

such as cookbooks provided by the Chef community can be

linked and proposed to the person using the decision support

system.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the EU’s Seventh Framework Programme (FP7/2007-

2013) projects 4CaaSt (grant agreement no. 258862) and

ALLOW Ensembles (grant agreement no. 600792), and from

the BMBF project ECHO (01XZ13023G).

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” 2009.

[2] J. Wettinger, V. Andrikopoulos, S. Strauch, and F. Leymann,
“Enabling Dynamic Deployment of Cloud Applications Using
a Modular and Extensible PaaS Environment,” in Proceedings
of IEEE CLOUD 2013. IEEE Computer Society, pp. 478–485.

[3] S. Strauch, V. Andrikopoulos, F. Leymann, and D. Muhler,
“ESBMT: Enabling Multi-Tenancy in Enterprise Service Buses,”
in Proceedings of CloudCom 2012. IEEE Computer Society
Press, pp. 456–463.

[4] A. Alves et al., “Web Services Business Process Execution
Language Version 2.0,” Comitee Specification, 2007.

28Ruby on Rails: http://rubyonrails.org
29Django: http://www.djangoproject.com

213

[5] Google, Inc., “Google Maps API Web Services.” [Online].
Available: http://developers.google.com/maps/documentation/
webservices

[6] S. Strauch, V. Andrikopoulos, S. Gómez Sáez, and F. Leymann,
“Implementation and Evaluation of a Multi-tenant Open-Source
ESB,” in Proceedings of ESOCC 2013, ser. Lecture Notes in
Computer Science, vol. 8135. Springer, 2013, pp. 79–93.

[7] ——, “ESBMT: A Multi-tenant Aware Enterprise Service Bus,”
International Journal of Next-Generation Computing, vol. 4,
no. 3, pp. 230–249, 2013.

[8] J. Wettinger, M. Behrendt, T. Binz, U. Breitenbücher, G. Bre-
iter, F. Leymann, S. Moser, I. Schwertle, and T. Spatzier,
“Integrating Configuration Management with Model-Driven
Cloud Management Based on TOSCA,” in Proceedings of
CLOSER 2013.

[9] S. Nelson-Smith, Test-Driven Infrastructure with Chef.
O’Reilly Media, Inc., 2011.

[10] J. Loope, Managing Infrastructure with Puppet. O’Reilly
Media, Inc., 2011.

[11] U. Breitenbücher, T. Binz, , O. Kopp, and F. Leymann,
“Pattern-Based Runtime Management of Composite Cloud
Applications,” in Proceedings of CLOSER 2013.

[12] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable
Cloud Services Using TOSCA,” Internet Computing, IEEE,
vol. 16, no. 3, pp. 80–85, 2012.

[13] M. Papazoglou and W. van den Heuvel, “Blueprinting the
Cloud,” Internet Computing, IEEE, vol. 15, no. 6, pp. 74–79,
2011.

[14] OASIS, “Topology and Orchestration Specification for Cloud
Applications (TOSCA) Version 1.0, Committee Specification
Draft 04,” 2012. [Online]. Available: http://docs.oasis-open.
org/tosca/TOSCA/v1.0/csd04/TOSCA-v1.0-csd04.html

[15] K. Pepple, Deploying OpenStack. O’Reilly Media, 2011.

[16] DMTF, “Open Virtualization Format Specification (OVF)
Version 2.0.0,” 2013. [Online]. Available: http://www.dmtf.
org/standards/ovf

[17] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski,
“Introducing STRATOS: A Cloud Broker Service,” in Proceed-
ings of IEEE CLOUD 2012. IEEE Computer Society, pp.
891–898.

[18] S. Zaman and D. Grosu, “An Online Mechanism for Dynamic
VM Provisioning and Allocation in Clouds,” in Proceedings of
IEEE CLOUD 2012. IEEE Computer Society, pp. 253–260.

[19] M. Bjorkqvist, L. Chen, and W. Binder, “Opportunistic Service
Provisioning in the Cloud,” in Proceedings of IEEE CLOUD
2012. IEEE Computer Society, pp. 237–244.

[20] D. Zamboni, Learning CFEngine 3: Automated System Ad-
ministration for Sites of Any Size. O’Reilly Media, Inc.,
2012.

[21] S. Günther, M. Haupt, and M. Splieth, “Utilizing Internal
Domain-Specific Languages for Deployment and Maintenance
of IT Infrastructures,” Very Large Business Applications
Lab Magdeburg, Fakultät für Informatik, Otto-von-Guericke-
Universität Magdeburg, Tech. Rep., 2010.

[22] T. Rosner, Learning AWS OpsWorks, 2013.

[23] enStratus Networks, Inc., “Cloud DevOps: Achieving Agility
Throughout the Application Lifecycle,” 2012.

[24] RightScale, Inc., “Chef with RightScale,” 2012.
[Online]. Available: http://www.rightscale.com/solutions/
managing-the-cloud/chef.php

[25] D. Sanderson, Programming Google App Engine. O’Reilly
Media, 2009.

[26] J. Vliet, F. Paganelli, S. Wel, and D. Dowd, Elastic Beanstalk.
O’Reilly Media, 2011.

All links were last followed on January 13, 2014.

214

	cover-IEEE
	Foliennummer 1

	INPROC-2014-01 - Characterizing and Evaluating Different Deployment Approaches for Cloud Applications

